If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-90X-2000=0
a = 1; b = -90; c = -2000;
Δ = b2-4ac
Δ = -902-4·1·(-2000)
Δ = 16100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16100}=\sqrt{100*161}=\sqrt{100}*\sqrt{161}=10\sqrt{161}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-10\sqrt{161}}{2*1}=\frac{90-10\sqrt{161}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+10\sqrt{161}}{2*1}=\frac{90+10\sqrt{161}}{2} $
| (3+(1/x))/(2-(4/x))=x | | 7x+22=-4 | | 90+x+(x/2)=180 | | 3x-72=6+32x | | 1/2x=1x+12 | | 14(6-4x)-4(16-10x)=x | | 6x-5=6(x-1)+12 | | 3/4x-9=6/8+4x | | 9x+29=x | | -3-3x=2x | | g➗1/2=3/4 | | -3y-3=2y | | 19x-1+25x+5=180 | | 36-1=7a | | 8+2/15x-4/15x=8/15x | | (X+10)(3x-5)=180 | | w-1/10=8/10 | | 6(x+3)-3=3(x+8) | | 3v-7=-35 | | x+(-13.3)=6.2 | | 0.3x+1.6=0.9x-0.8 | | 6(a+8)=7(a-2) | | 2x+(19)=-19 | | 2x+(31)=-15 | | 8/15×=8+2/15x-4/15x | | 100x+150=200 | | 7+-3g=4 | | 3+-2q=11 | | 6(x-3)+2=32 | | 4/5x-23=25 | | -(4-x)=(12x-72) | | 3x+30=2x+65 |